Escherichia coli BL21(DE3)
The pgl gene is absent in Escherichia coli BL21(DE3), leading to reduced efficiency of the pentose phosphate pathway (PPP), diminished NADPH generation, lower availability of Ru5P and erythrose-4-phosphate, and accumulation of γ/δ-6-phosphogluconolactone [345].
Synonyms
Escherichia coli BTY0
Escherichia coli B1
Ancestors
Derived strains
- Escherichia coli BTY1
- Escherichia coli BTY2
- Escherichia coli BTY3
- Escherichia coli BTY0.1
- Escherichia coli BTY0.2
- Escherichia coli BTY0.3
- Escherichia coli BTY0.4
- Escherichia coli BTY0.5
- Escherichia coli BTY0.6
- Escherichia coli BTY0.7
- Escherichia coli BTY0.8
- Escherichia coli BTY0.9
- Escherichia coli BTY0.10
- Escherichia coli BTY0.11
- Escherichia coli BTY0.12
- Escherichia coli BTY0.13
- Escherichia coli BWZ1
- Escherichia coli BWZ2
- Escherichia coli B-Acc
- Escherichia coli B-FabF
- Escherichia coli B-Acc/FabF
- Escherichia coli B-Acs/Acc
- Escherichia coli B-Acs/FabF
- Escherichia coli BL21(DE3) (pACYC-PhlD)
- Escherichia coli PM-14
- Escherichia coli BL21(DE3)/pCTSDT
- Escherichia coli B2
- Escherichia coli B4
- Escherichia coli B7
- Escherichia coli B1/pED
- Escherichia coli B1/pVio
- Escherichia coli B1/pED + pVio
- Escherichia coli BZ
- Escherichia coli BL21(pETDuet-ldhL-fdh)
- Escherichia coli ET00
- Escherichia coli ET02
- Escherichia coli BL21(DE3)/pET300-T5H
- Escherichia coli BL21(DE3)/pCOLADuet-GST∆37T5H+TDC
- Escherichia coli BL21(DE3)/pET300-∆37T5H-RR
- Escherichia coli BL21ΔtnaA
- Escherichia coli BE5
- Escherichia coli BPHE
- Escherichia coli BWT01
- Escherichia coli PTS2
- Escherichia coli PTS1
- Escherichia coli BTA1
- Escherichia coli BTA2
- Escherichia coli BTA3
- Escherichia coli BTA4
- Escherichia coli BTA5
- Escherichia coli BL21(DE3)/pN-1
- Escherichia coli BL21(DE3)/pN-2
- Escherichia coli BL21(DE3)/pN-3
- Escherichia coli BL21(DE3)/pN-4
- Escherichia coli BL21(DE3)/pN-4
- Escherichia coli BL21(DE3)/pET24a-Asn-Ec
- Escherichia coli BL21-5
- Escherichia coli SC5
- Escherichia coli ZY01
- Escherichia coli ZY02
- Escherichia coli ZY03
- Escherichia coli ZY04
- Escherichia coli ZY05
- Escherichia coli GIMP10
- Escherichia coli AKN1
- Escherichia coli AKN3
- Escherichia coli BL21(DE3) ΔpurR
- Escherichia coli BL21(DE3) prs
- Escherichia coli BL21(DE3) purF
- Escherichia coli BL21(DE3) purD
- Escherichia coli BL21(DE3) purN
- Escherichia coli BL21(DE3) purT
- Escherichia coli BL21(DE3) purL
- Escherichia coli BL21(DE3) purM
- Escherichia coli BL21(DE3) purK
- Escherichia coli BL21(DE3) purE
- Escherichia coli BL21(DE3) purC
- Escherichia coli BL21(DE3) purB
- Escherichia coli BL21(DE3) purH
- Escherichia coli P1
- Escherichia coli P2
- Escherichia coli P3
- Escherichia coli P4
- Escherichia coli P9
- Escherichia coli P10
- Escherichia coli P11
- Escherichia coli P12
- Escherichia coli P13
- Escherichia coli BL21(DE3) Δpgi
- Escherichia coli BL21(DE3) ΔpfkA
- Escherichia coli BL21(DE3) ΔpfkB
- Escherichia coli BL21(DE3) ΔpyrE
- Escherichia coli BL21(DE3) ΔhisG
- Escherichia coli BL21(DE3) ΔthiC
- Escherichia coli BL21(DE3) ΔyrfG
- Escherichia coli BL21(DE3) ΔnagD
- Escherichia coli BL21(DE3) ΔushA
- Escherichia coli BL21(DE3) ΔsurE
- Escherichia coli BL21(DE3) ΔpurR
- Escherichia coli BL21(DE3) ΔguaB
- Escherichia coli BL21(DE3) ΔpurA
- Escherichia coli CarP
- Escherichia coli CarA
- Escherichia coli R203
- Escherichia coli BL-1
- Escherichia coli BL-8
- Escherichia coli BL21(DE3)/(pET-28a)
- Escherichia coli BL21(DE3)/(pET-wvds)
- Escherichia coli BL21(DE3)/(pET-cvds)
- Escherichia coli B-AP1
- Escherichia coli B-AP2
- Escherichia coli B-AP3
- Escherichia coli B-AP4
- Escherichia coli B-AP5
- Escherichia coli B-AP6
- Escherichia coli B-GK
Genotype with respect to parental
F− ompT hsdSB (rB−mB−) gal dcm λ(DE3)
Genotype with respect to wild type
F− dcm gal ompT hsdS(rB- mB-) | F− ompT hsdSB (rB−mB−) gal dcm λ(DE3)Bars (|) indicate differences between strains.
Production
| Metabolites | Production type | Production | Biomass | Carbon source | Time | Scale | Ref. |
|---|---|---|---|---|---|---|---|
| malonyl-CoA | Biomass-specific yield | 0.07 nmol/mg DCW | Flask | [198] | |||
| acetyl-CoA | Biomass-specific yield | 0.93 nmol/mg DCW | Flask | [198] | |||
| IMP | Titer | 434.2 mg/L | Flask | [341] | |||
| IMP | Biomass-specific yield | 17.4 mg/OD600 | Flask | [341] |
* Inferred from plots using RetroPlot.
Heterologous.
Target metabolites are shown in bold, while non-bold metabolites represent intermediates or potential byproducts.
References
- Ming-Yue Fang, Chong Zhang, Song Yang, Jin-Yu Cui, Pei-Xia Jiang, Kai Lou, Masaaki Wachi & Xin-Hui Xing (2015). High crude violacein production from glucose by Escherichia coli engineered with interactive control of tryptophan pathway and violacein biosynthetic pathway. Microbial Cell Factories.
- Byoungjin Kim, Robert Binkley, Hyun Uk Kim & Sang Yup Lee (2018). Metabolic engineering of Escherichia coli for the enhanced production of l‐tyrosine. Biotechnology & Bioengineering.
- Wenjuan Zha, Sheryl B. Rubin-Pitel, Zengyi Shao & Huimin Zhao (2009). Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metabolic Engineering.
- Dong-Eun Chang, Heung-Chae Jung, Joon-Shick Rhee & Jae-Gu Pan (1999). Homofermentative Production of d- orl-Lactate in Metabolically Engineered Escherichia coli RR1. Applied and Environmental Microbiology.
- Long M, Xu M, Ma Z, Pan X, You J, Hu M, Shao Y, Yang T, Zhang X, Rao Z. Significantly enhancing production of trans-4-hydroxy-l-proline by integrated system engineering in Escherichia coli. Sci Adv. 2020 May 22;6(21):eaba2383.
- Arense, Paula; Bernal, Vicente; Charlier, Daniël; Iborra, José Luis; Foulquié-Moreno, Maria Remedios & Cánovas, Manuel. Metabolic engineering for high yielding L(-)-carnitine production in Escherichia coli. Microbial Cell Factories. 2013, 12(1).
- Hu, Miaomiao; Li, Mengli; Li, Chenchen & Zhang, Tao. Biosynthesis of Lacto-N-fucopentaose I in Escherichia coli by metabolic pathway rational design. Carbohydrate Polymers. 2022, 297, 120017.
- Zheng, Zhaojuan; Zhao, Mingyue; Zang, Ying; Zhou, Ying & Ouyang, Jia. Production of optically pure l-phenyllactic acid by using engineered Escherichia coli coexpressing l-lactate dehydrogenase and formate dehydrogenase. Journal of Biotechnology. 2015, 207, 47-51.
- Hao Zhang, Zhong Liang, Ming Zhao, Yanqin Ma, Zhengshan Luo, Sha Li & Hong Xu (2022). Metabolic Engineering of Escherichia coli for Ectoine Production With a Fermentation Strategy of Supplementing the Amino Donor. Frontiers in Bioengineering and Biotechnology.
- Sangkyu Park, Kiyoon Kang, Shin Woo Lee, Mi-Jeong Ahn, Jung-Myung Bae & Kyoungwhan Back (2010). Production of serotonin by dual expression of tryptophan decarboxylase and tryptamine 5-hydroxylase in Escherichia coli. Applied Microbiology and Biotechnology.
- Xu, Da; Fang, Mengjun; Wang, Haijiao; Huang, Lei; Xu, Qinyang & Xu, Zhinan. Enhanced production of 5-hydroxytryptophan through the regulation of L-tryptophan biosynthetic pathway. Applied Microbiology and Biotechnology. 2020, 104(6), 2481-2488.
- Yang, Haiquan; Xue, Yuxiang; Yang, Cui; Shen, Wei; Fan, You & Chen, Xianzhong. Modular Engineering of Tyrosol Production in Escherichia coli. Journal of Agricultural and Food Chemistry. 2019, 67(14), 3900-3908.
- Zhou, Wei; Bi, Huiping; Zhuang, Yibin; He, Qinglin; Yin, Hua; Liu, Tao & Ma, Yanhe. Production of Cinnamyl Alcohol Glucoside from Glucose in Escherichia coli. Journal of Agricultural and Food Chemistry. 2017, 65(10), 2129-2135.
- Pengfei Gu, Qianqian Ma, Shuo Zhao, Qiang Li & Juan Gao (2023). Alanine dehydrogenases from four different microorganisms: characterization and their application in L-alanine production. Biotechnology for Biofuels and Bioproducts.
- Fan, Yucheng; Wei, Zijia; Zhang, Yuhua & Duan, Xuguo. Enhancing L-asparagine Production Through In Vivo ATP Regeneration System Utilizing Glucose Metabolism of Escherichia coli. Applied Biochemistry and Biotechnology. 2024, 196(12), 8685-8699.
- Liu, Tongle; Zhang, Kang; Zhang, Mengwei; Wang, Luyao; Wu, Yi; Cai, Bohan; Gao, Shengqi; Wu, Mengping; Wu, Wentai; Wu, Jing & Su, Lingqia. De Novo Synthesis of Lacto-N-Neotetraose in Escherichia coli through Metabolic Engineering with Glucose as the Sole Carbon Source. Journal of Agricultural and Food Chemistry. 2025, 73(22), 13736-13745.